中文字幕日韩精品一区二区免费_精品一区二区三区国产精品无卡在_国精品无码专区一区二区三区_国产αv三级中文在线

TensorFlow實(shí)現(xiàn)指數(shù)衰減學(xué)習(xí)率的方法-創(chuàng)新互聯(lián)

在TensorFlow中,tf.train.exponential_decay函數(shù)實(shí)現(xiàn)了指數(shù)衰減學(xué)習(xí)率,通過這個(gè)函數(shù),可以先使用較大的學(xué)習(xí)率來快速得到一個(gè)比較優(yōu)的解,然后隨著迭代的繼續(xù)逐步減小學(xué)習(xí)率,使得模型在訓(xùn)練后期更加穩(wěn)定。

創(chuàng)新互聯(lián)是一家專業(yè)提供彭澤企業(yè)網(wǎng)站建設(shè),專注與成都做網(wǎng)站、網(wǎng)站設(shè)計(jì)、H5網(wǎng)站設(shè)計(jì)、小程序制作等業(yè)務(wù)。10年已為彭澤眾多企業(yè)、政府機(jī)構(gòu)等服務(wù)。創(chuàng)新互聯(lián)專業(yè)的建站公司優(yōu)惠進(jìn)行中。

TensorFlow實(shí)現(xiàn)指數(shù)衰減學(xué)習(xí)率的方法

tf.train.exponential_decay(learning_rate, global_step, decay_steps, decay_rate, staircase, name)函數(shù)會指數(shù)級地減小學(xué)習(xí)率,它實(shí)現(xiàn)了以下代碼的功能:

#tf.train.exponential_decay函數(shù)可以通過設(shè)置staircase參數(shù)選擇不同的學(xué)習(xí)率衰減方式

#staircase參數(shù)為False(默認(rèn))時(shí),選擇連續(xù)衰減學(xué)習(xí)率:
decayed_learning_rate = learning_rate * math.pow(decay_rate, global_step / decay_steps)

#staircase參數(shù)為True時(shí),選擇階梯狀衰減學(xué)習(xí)率:
decayed_learning_rate = learning_rate * math.pow(decay_rate, global_step // decay_steps)

①decayed_leaming_rate為每一輪優(yōu)化時(shí)使用的學(xué)習(xí)率;

②leaming_rate為事先設(shè)定的初始學(xué)習(xí)率;

③decay_rate為衰減系數(shù);

④global_step為當(dāng)前訓(xùn)練的輪數(shù);

⑤decay_steps為衰減速度,通常代表了完整的使用一遍訓(xùn)練數(shù)據(jù)所需要的迭代輪數(shù),這個(gè)迭代輪數(shù)也就是總訓(xùn)練樣本數(shù)除以每一個(gè)batch中的訓(xùn)練樣本數(shù),比如訓(xùn)練數(shù)據(jù)集的大小為128,每一個(gè)batch中樣例的個(gè)數(shù)為8,那么decay_steps就為16。

當(dāng)staircase參數(shù)設(shè)置為True,使用階梯狀衰減學(xué)習(xí)率時(shí),代碼的含義是每完整地過完一遍訓(xùn)練數(shù)據(jù)即每訓(xùn)練decay_steps輪,學(xué)習(xí)率就減小一次,這可以使得訓(xùn)練數(shù)據(jù)集中的所有數(shù)據(jù)對模型訓(xùn)練有相等的作用;當(dāng)staircase參數(shù)設(shè)置為False,使用連續(xù)的衰減學(xué)習(xí)率時(shí),不同的訓(xùn)練數(shù)據(jù)有不同的學(xué)習(xí)率,而當(dāng)學(xué)習(xí)率減小時(shí),對應(yīng)的訓(xùn)練數(shù)據(jù)對模型訓(xùn)練結(jié)果的影響也就小了。

接下來看一看tf.train.exponential_decay函數(shù)應(yīng)用的兩種形態(tài)(省略部分代碼):

①第一種形態(tài),global_step作為變量被優(yōu)化,在這種形態(tài)下,global_step是變量,在minimize函數(shù)中傳入global_step將自動(dòng)更新global_step參數(shù)(global_step每輪迭代自動(dòng)加一),從而使得學(xué)習(xí)率也得到相應(yīng)更新:

import tensorflow as tf
 .
 .
 .
#設(shè)置學(xué)習(xí)率
global_step = tf.Variable(tf.constant(0))
learning_rate = tf.train.exponential_decay(0.01, global_step, 16, 0.96, staircase=True)
#定義反向傳播算法的優(yōu)化方法
train_step = tf.train.AdamOptimizer(learning_rate).minimize(cross_entropy, global_step=global_step)
 .
 .
 .
#創(chuàng)建會話
with tf.Session() as sess:
 .
 .
 .
 for i in range(STEPS):
 .
 .
 .
  #通過選取的樣本訓(xùn)練神經(jīng)網(wǎng)絡(luò)并更新參數(shù)
  sess.run(train_step, feed_dict={x:X[start:end], y_:Y[start:end]})
  .
 .
 .

另外有需要云服務(wù)器可以了解下創(chuàng)新互聯(lián)scvps.cn,海內(nèi)外云服務(wù)器15元起步,三天無理由+7*72小時(shí)售后在線,公司持有idc許可證,提供“云服務(wù)器、裸金屬服務(wù)器、高防服務(wù)器、香港服務(wù)器、美國服務(wù)器、虛擬主機(jī)、免備案服務(wù)器”等云主機(jī)租用服務(wù)以及企業(yè)上云的綜合解決方案,具有“安全穩(wěn)定、簡單易用、服務(wù)可用性高、性價(jià)比高”等特點(diǎn)與優(yōu)勢,專為企業(yè)上云打造定制,能夠滿足用戶豐富、多元化的應(yīng)用場景需求。

文章標(biāo)題:TensorFlow實(shí)現(xiàn)指數(shù)衰減學(xué)習(xí)率的方法-創(chuàng)新互聯(lián)
網(wǎng)頁網(wǎng)址:http://m.rwnh.cn/article16/ccijgg.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供商城網(wǎng)站、網(wǎng)站收錄虛擬主機(jī)、服務(wù)器托管Google、小程序開發(fā)

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來源: 創(chuàng)新互聯(lián)

網(wǎng)站優(yōu)化排名
大埔县| 温宿县| 普兰县| 广元市| 怀宁县| 平原县| 七台河市| 安仁县| 保亭| 兴安县| 泽普县| 吉隆县| 永胜县| 宜昌市| 南召县| 信宜市| 吉林省| 博罗县| 筠连县| 峨眉山市| 特克斯县| 唐海县| 将乐县| 龙州县| 饶河县| 中牟县| 西平县| 新安县| 新河县| 岑溪市| 西乌珠穆沁旗| 剑阁县| 麦盖提县| 揭西县| 边坝县| 永济市| 石阡县| 连云港市| 阿勒泰市| 东城区| 贵阳市|