使用OpenCV怎么實現(xiàn)一個人臉檢測功能?很多新手對此不是很清楚,為了幫助大家解決這個難題,下面小編將為大家詳細講解,有這方面需求的人可以來學習下,希望你能有所收獲。
網(wǎng)頁設(shè)計是網(wǎng)站建設(shè)的前奏,好的網(wǎng)頁設(shè)計更深度的剖析產(chǎn)品和設(shè)計風格定位,結(jié)合最新的網(wǎng)頁設(shè)計流行趨勢,與WVI應(yīng)用標準,設(shè)計出具企業(yè)表現(xiàn)力,大器而深穩(wěn)的網(wǎng)站界面設(shè)。創(chuàng)新互聯(lián)建站公司2013年成立,是成都網(wǎng)站建設(shè)公司:提供企業(yè)網(wǎng)站設(shè)計,成都品牌網(wǎng)站建設(shè),營銷型企業(yè)網(wǎng)站建設(shè)方案,自適應(yīng)網(wǎng)站建設(shè),成都小程序開發(fā),專業(yè)建站公司做網(wǎng)站。1、HAAR級聯(lián)檢測
#include <opencv2/opencv.hpp> #include <iostream> using namespace cv; #include <iostream> #include <cstdlib> using namespace std; int main(int artc, char** argv) { face_detect_haar(); waitKey(0); return 0; } void face_detect_haar() { CascadeClassifier faceDetector; std::string haar_data_file = "./models/haarcascades/haarcascade_frontalface_alt_tree.xml"; faceDetector.load(haar_data_file); vector<Rect> faces; //VideoCapture capture(0); VideoCapture capture("./video/test.mp4"); Mat frame, gray; int count=0; while (capture.read(frame)) { int64 start = getTickCount(); if (frame.empty()) { break; } // 水平鏡像調(diào)整 // flip(frame, frame, 1); imshow("input", frame); if (frame.channels() == 4) cvtColor(frame, frame, COLOR_BGRA2BGR); cvtColor(frame, gray, COLOR_BGR2GRAY); equalizeHist(gray, gray); faceDetector.detectMultiScale(gray, faces, 1.2, 1, 0, Size(30, 30), Size(400, 400)); for (size_t t = 0; t < faces.size(); t++) { count++; rectangle(frame, faces[t], Scalar(0, 255, 0), 2, 8, 0); } float fps = getTickFrequency() / (getTickCount() - start); ostringstream ss;ss.str(""); ss << "FPS: " << fps << " ; inference time: " << time << " ms"; putText(frame, ss.str(), Point(20, 20), 0, 0.75, Scalar(0, 0, 255), 2, 8); imshow("haar_face_detection", frame); if (waitKey(1) >= 0) break; } printf("total face: %d\n", count); }
2、 DNN人臉檢測
#include <opencv2/dnn.hpp> #include <opencv2/opencv.hpp> using namespace cv; using namespace cv::dnn; #include <iostream> #include <cstdlib> using namespace std; const size_t inWidth = 300; const size_t inHeight = 300; const double inScaleFactor = 1.0; const Scalar meanVal(104.0, 177.0, 123.0); const float confidenceThreshold = 0.7; void face_detect_dnn(); void mtcnn_demo(); int main(int argc, char** argv) { face_detect_dnn(); waitKey(0); return 0; } void face_detect_dnn() { //這里采用tensorflow模型 std::string modelBinary = "./models/dnn/face_detector/opencv_face_detector_uint8.pb"; std::string modelDesc = "./models/dnn/face_detector/opencv_face_detector.pbtxt"; // 初始化網(wǎng)絡(luò) dnn::Net net = readNetFromTensorflow(modelBinary, modelDesc); net.setPreferableBackend(DNN_BACKEND_OPENCV); net.setPreferableTarget(DNN_TARGET_CPU); if (net.empty()) { printf("Load models fail...\n"); return; } // 打開攝像頭 // VideoCapture capture(0); VideoCapture capture("./video/test.mp4"); if (!capture.isOpened()) { printf("Don't find video...\n"); return; } Mat frame; int count=0; while (capture.read(frame)) { int64 start = getTickCount(); if (frame.empty()) { break; } // 水平鏡像調(diào)整 // flip(frame, frame, 1); imshow("input", frame); if (frame.channels() == 4) cvtColor(frame, frame, COLOR_BGRA2BGR); // 輸入數(shù)據(jù)調(diào)整 Mat inputBlob = blobFromImage(frame, inScaleFactor, Size(inWidth, inHeight), meanVal, false, false); net.setInput(inputBlob, "data"); // 人臉檢測 Mat detection = net.forward("detection_out"); vector<double> layersTimings; double freq = getTickFrequency() / 1000; double time = net.getPerfProfile(layersTimings) / freq; Mat detectionMat(detection.size[2], detection.size[3], CV_32F, detection.ptr<float>()); ostringstream ss; for (int i = 0; i < detectionMat.rows; i++) { // 置信度 0~1之間 float confidence = detectionMat.at<float>(i, 2); if (confidence > confidenceThreshold) { count++; int xLeftBottom = static_cast<int>(detectionMat.at<float>(i, 3) * frame.cols); int yLeftBottom = static_cast<int>(detectionMat.at<float>(i, 4) * frame.rows); int xRightTop = static_cast<int>(detectionMat.at<float>(i, 5) * frame.cols); int yRightTop = static_cast<int>(detectionMat.at<float>(i, 6) * frame.rows); Rect object((int)xLeftBottom, (int)yLeftBottom, (int)(xRightTop - xLeftBottom), (int)(yRightTop - yLeftBottom)); rectangle(frame, object, Scalar(0, 255, 0)); ss << confidence; std::string conf(ss.str()); std::string label = "Face: " + conf; int baseLine = 0; Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine); rectangle(frame, Rect(Point(xLeftBottom, yLeftBottom - labelSize.height), Size(labelSize.width, labelSize.height + baseLine)), Scalar(255, 255, 255), FILLED); putText(frame, label, Point(xLeftBottom, yLeftBottom), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 0, 0)); } } float fps = getTickFrequency() / (getTickCount() - start); ss.str(""); ss << "FPS: " << fps << " ; inference time: " << time << " ms"; putText(frame, ss.str(), Point(20, 20), 0, 0.75, Scalar(0, 0, 255), 2, 8); imshow("dnn_face_detection", frame); if (waitKey(1) >= 0) break; } printf("total face: %d\n", count); }
看完上述內(nèi)容是否對您有幫助呢?如果還想對相關(guān)知識有進一步的了解或閱讀更多相關(guān)文章,請關(guān)注創(chuàng)新互聯(lián)網(wǎng)站建設(shè)公司行業(yè)資訊頻道,感謝您對創(chuàng)新互聯(lián)建站的支持。
另外有需要云服務(wù)器可以了解下創(chuàng)新互聯(lián)建站m.rwnh.cn,海內(nèi)外云服務(wù)器15元起步,三天無理由+7*72小時售后在線,公司持有idc許可證,提供“云服務(wù)器、裸金屬服務(wù)器、建站服務(wù)器、香港服務(wù)器、美國服務(wù)器、虛擬主機、免備案服務(wù)器”等云主機租用服務(wù)以及企業(yè)上云的綜合解決方案,具有“安全穩(wěn)定、簡單易用、服務(wù)可用性高、性價比高”等特點與優(yōu)勢,專為企業(yè)上云打造定制,能夠滿足用戶豐富、多元化的應(yīng)用場景需求。
網(wǎng)頁名稱:使用OpenCV怎么實現(xiàn)一個人臉檢測功能-創(chuàng)新互聯(lián)
轉(zhuǎn)載源于:http://m.rwnh.cn/article18/eppgp.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供App設(shè)計、動態(tài)網(wǎng)站、關(guān)鍵詞優(yōu)化、網(wǎng)站策劃、品牌網(wǎng)站建設(shè)、網(wǎng)站收錄
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)
猜你還喜歡下面的內(nèi)容