内射老阿姨1区2区3区4区_久久精品人人做人人爽电影蜜月_久久国产精品亚洲77777_99精品又大又爽又粗少妇毛片

ElasticSearch中g(shù)roupby+avg+sort等聚合分析是什么樣的

本篇文章為大家展示了ElasticSearch中g(shù)roup by + avg + sort等聚合分析是什么樣的,內(nèi)容簡(jiǎn)明扼要并且容易理解,絕對(duì)能使你眼前一亮,通過這篇文章的詳細(xì)介紹希望你能有所收獲。

創(chuàng)新互聯(lián)秉承實(shí)現(xiàn)全網(wǎng)價(jià)值營銷的理念,以專業(yè)定制企業(yè)官網(wǎng),成都網(wǎng)站制作、成都網(wǎng)站設(shè)計(jì),小程序定制開發(fā),網(wǎng)頁設(shè)計(jì)制作,成都手機(jī)網(wǎng)站制作,網(wǎng)絡(luò)營銷推廣幫助傳統(tǒng)企業(yè)實(shí)現(xiàn)“互聯(lián)網(wǎng)+”轉(zhuǎn)型升級(jí)專業(yè)定制企業(yè)官網(wǎng),公司注重人才、技術(shù)和管理,匯聚了一批優(yōu)秀的互聯(lián)網(wǎng)技術(shù)人才,對(duì)客戶都以感恩的心態(tài)奉獻(xiàn)自己的專業(yè)和所長(zhǎng)。

將文本fields的Fielddata屬性設(shè)置true

PUT http://{{es-host}}/ecommerce/_mapping/produce
{
	"properties":{
		"tags":{
			"type":"text",
			"fielddata":true
		}
	}
}

1、計(jì)算每個(gè)tag下的商品數(shù)量

GET http://{{es-host}}/ecommerce/produce/_search
{
	"size":0,
	"aggs":{
		"group_by_tags":{
			"terms":{
				"field":"tags"
			}
		}
	}
}

group_by_tags 代表聚合分組名稱,可以隨意寫,表述清楚含義即可;

field的值對(duì)應(yīng)要聚合的字段

結(jié)果:

{
    "took": 43,
    "timed_out": false,
    "_shards": {
        "total": 5,
        "successful": 5,
        "skipped": 0,
        "failed": 0
    },
    "hits": {
        "total": 4,
        "max_score": 0,
        "hits": []
    },
    "aggregations": {
        "group_by_tags": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
                {
                    "key": "fangzhu",
                    "doc_count": 2
                },
                {
                    "key": "meibai",
                    "doc_count": 2
                },
                {
                    "key": "qingxin",
                    "doc_count": 1
                }
            ]
        }
    }
}

2、按商品名稱搜索并聚合

GET http://{{es-host}}/ecommerce/produce/_search
{
	"query":{
		"match_phrase":{
			"name":"yagao"
		}
	},
	"aggs":{
		"group_by_tags":{
			"terms":{
				"field":"tags"
			}
		}
	},
	"size":0
}

檢索結(jié)果:

{
    "took": 17,
    "timed_out": false,
    "_shards": {
        "total": 5,
        "successful": 5,
        "skipped": 0,
        "failed": 0
    },
    "hits": {
        "total": 4,
        "max_score": 0,
        "hits": []
    },
    "aggregations": {
        "group_by_tags": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
                {
                    "key": "fangzhu",
                    "doc_count": 2
                },
                {
                    "key": "meibai",
                    "doc_count": 2
                },
                {
                    "key": "qingxin",
                    "doc_count": 1
                }
            ]
        }
    }
}

3、先分組,再計(jì)算每個(gè)分組的平均值

GET http://{{es-host}}/ecommerce/produce/_search
{
	"size":0,
	"aggs":{
		"group_by_tags":{
			"terms":{
				"field":"tags"
			},
			"aggs":{
				"avg_price":{
					"avg":{
						"field":"price"
					}
				}
			}
		}
	}
}

結(jié)果:

{
    "took": 83,
    "timed_out": false,
    "_shards": {
        "total": 5,
        "successful": 5,
        "skipped": 0,
        "failed": 0
    },
    "hits": {
        "total": 4,
        "max_score": 0,
        "hits": []
    },
    "aggregations": {
        "group_by_tags": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
                {
                    "key": "fangzhu",
                    "doc_count": 2,
                    "avg_price": {
                        "value": 27.5
                    }
                },
                {
                    "key": "meibai",
                    "doc_count": 2,
                    "avg_price": {
                        "value": 40
                    }
                },
                {
                    "key": "qingxin",
                    "doc_count": 1,
                    "avg_price": {
                        "value": 40
                    }
                }
            ]
        }
    }
}

上述內(nèi)容就是ElasticSearch中g(shù)roup by + avg + sort等聚合分析是什么樣的,你們學(xué)到知識(shí)或技能了嗎?如果還想學(xué)到更多技能或者豐富自己的知識(shí)儲(chǔ)備,歡迎關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道。

本文題目:ElasticSearch中g(shù)roupby+avg+sort等聚合分析是什么樣的
標(biāo)題來源:http://m.rwnh.cn/article22/ggdojc.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供微信公眾號(hào)、網(wǎng)站建設(shè)、App開發(fā)網(wǎng)站維護(hù)、電子商務(wù)、網(wǎng)站收錄

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請(qǐng)盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如需處理請(qǐng)聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來源: 創(chuàng)新互聯(lián)

網(wǎng)站優(yōu)化排名
大关县| 凭祥市| 工布江达县| 鹰潭市| 仁布县| 南川市| 安远县| 巴彦县| 临沭县| 甘德县| 江山市| 洞口县| 五河县| 兴宁市| 闻喜县| 京山县| 大同县| 临武县| 娄烦县| 读书| 凌源市| 雷山县| 临桂县| 盐源县| 米林县| 渭源县| 盐源县| 当涂县| 河津市| 元阳县| 桂阳县| 青铜峡市| 志丹县| 金乡县| 班玛县| 吉林市| 太白县| 巍山| 望江县| 合川市| 青冈县|