這篇文章主要介紹了Pytorch.nn.conv2d驗證方式的示例分析,具有一定借鑒價值,感興趣的朋友可以參考下,希望大家閱讀完這篇文章之后大有收獲,下面讓小編帶著大家一起了解一下。
成都創(chuàng)新互聯(lián)公司-專業(yè)網(wǎng)站定制、快速模板網(wǎng)站建設(shè)、高性價比隆安網(wǎng)站開發(fā)、企業(yè)建站全套包干低至880元,成熟完善的模板庫,直接使用。一站式隆安網(wǎng)站制作公司更省心,省錢,快速模板網(wǎng)站建設(shè)找我們,業(yè)務(wù)覆蓋隆安地區(qū)。費(fèi)用合理售后完善,十多年實體公司更值得信賴。首先提出兩個問題:
1.輸入圖片是單通道情況下的filters是如何操作的? 即一通道卷積核卷積過程
2.輸入圖片是多通道情況下的filters是如何操作的? 即多通道多個卷積核卷積過程
這里首先貼出官方文檔:
classtorch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)[source]
Parameters:
in_channels (int) – Number of channels in the input image
out_channels (int) – Number of channels produced by the convolution
kernel_size (intortuple) – Size of the convolving kernel
stride (intortuple,optional) – Stride of the convolution. Default: 1
padding (intortuple,optional) – Zero-padding added to both sides of the input. Default: 0
dilation (intortuple,optional) – Spacing between kernel elements. Default: 1
groups (int,optional) – Number of blocked connections from input channels to output channels. Default: 1
bias (bool,optional) – If True, adds a learnable bias to the output. Default: True
這個文檔中的公式對我來說,并不能看的清楚
一通道卷積核卷積過程:
比如32個卷積核,可以學(xué)習(xí)32種特征。在有多個卷積核時,如下圖所示:輸出就為32個feature map
也就是, 當(dāng)conv2d( in_channels = 1 , out_channels = N)
有N個filter對輸入進(jìn)行濾波。同時輸出N個結(jié)果即feature map,每個filter濾波輸出一個結(jié)果.
import torch from torch.autograd import Variable ##單位矩陣來模擬輸入 input=torch.ones(1,1,5,5) input=Variable(input) x=torch.nn.Conv2d(in_channels=1,out_channels=3,kernel_size=3,groups=1) out=x(input) print(out) print(list(x.parameters()))
輸出out的結(jié)果和conv2d 的參數(shù)如下,可以看到,conv2d是有3個filter加一個bias
# out的結(jié)果 Variable containing: (0 ,0 ,.,.) = -0.3065 -0.3065 -0.3065 -0.3065 -0.3065 -0.3065 -0.3065 -0.3065 -0.3065 (0 ,1 ,.,.) = -0.3046 -0.3046 -0.3046 -0.3046 -0.3046 -0.3046 -0.3046 -0.3046 -0.3046 (0 ,2 ,.,.) = 0.0710 0.0710 0.0710 0.0710 0.0710 0.0710 0.0710 0.0710 0.0710 [torch.FloatTensor of size 1x3x3x3] # conv2d的參數(shù) [Parameter containing: (0 ,0 ,.,.) = -0.0789 -0.1932 -0.0990 0.1571 -0.1784 -0.2334 0.0311 -0.2595 0.2222 (1 ,0 ,.,.) = -0.0703 -0.3159 -0.3295 0.0723 0.3019 0.2649 -0.2217 0.0680 -0.0699 (2 ,0 ,.,.) = -0.0736 -0.1608 0.1905 0.2738 0.2758 -0.2776 -0.0246 -0.1781 -0.0279 [torch.FloatTensor of size 3x1x3x3] , Parameter containing: 0.3255 -0.0044 0.0733 [torch.FloatTensor of size 3] ]
驗證如下,因為是單位矩陣,所以直接對參數(shù)用sum()來模擬卷積過程:
f_p=list(x.parameters())[0] f_p=f_p.data.numpy() print("the result of first channel in image:", f_p[0].sum()+(0.3255))
可以看到結(jié)果是和(0 ,0 ,.,.) = -0.3065 ....一樣的. 說明操作是通過卷積求和的.
the result of first channel in image: -0.306573044777
多通道卷積核卷積過程:
下圖展示了在四個通道上的卷積操作,有兩個卷積核,生成兩個通道。其中需要注意的是,四個通道上每個通道對應(yīng)一個卷積核,先將w2忽略,只看w1,那么在w1的某位置(i,j)處的值,是由四個通道上(i,j)處的卷積結(jié)果相加得到的。 所以最后得到兩個feature map, 即輸出層的卷積核核個數(shù)為 feature map 的個數(shù)。
在pytorch 中的展示為
conv2d( in_channels = X(x>1) , out_channels = N)
有N乘X個filter(N組filters,每組X 個)對輸入進(jìn)行濾波。即每次有一組里X個filter對原X個channels分別進(jìn)行濾波最后相加輸出一個結(jié)果,最后輸出N個結(jié)果即feature map。
驗證如下:
##單位矩陣來模擬輸入 input=torch.ones(1,3,5,5) input=Variable(input) x=torch.nn.Conv2d(in_channels=3,out_channels=4,kernel_size=3,groups=1) out=x(input) print(list(x.parameters()))
可以看到共有4*3=12個filter 和一個1×4的bias 作用在這個(3,5,5)的單位矩陣上
## out輸出的結(jié)果 Variable containing: (0 ,0 ,.,.) = -0.6390 -0.6390 -0.6390 -0.6390 -0.6390 -0.6390 -0.6390 -0.6390 -0.6390 (0 ,1 ,.,.) = -0.1467 -0.1467 -0.1467 -0.1467 -0.1467 -0.1467 -0.1467 -0.1467 -0.1467 (0 ,2 ,.,.) = 0.4138 0.4138 0.4138 0.4138 0.4138 0.4138 0.4138 0.4138 0.4138 (0 ,3 ,.,.) = -0.3981 -0.3981 -0.3981 -0.3981 -0.3981 -0.3981 -0.3981 -0.3981 -0.3981 [torch.FloatTensor of size 1x4x3x3] ## x的參數(shù)設(shè)置 [Parameter containing: (0 ,0 ,.,.) = -0.0803 0.1473 -0.0762 0.0284 -0.0050 -0.0246 0.1438 0.0955 -0.0500 (0 ,1 ,.,.) = 0.0716 0.0062 -0.1472 0.1793 0.0543 -0.1764 -0.1548 0.1379 0.1143 (0 ,2 ,.,.) = -0.1741 -0.1790 -0.0053 -0.0612 -0.1856 -0.0858 -0.0553 0.1621 -0.1822 (1 ,0 ,.,.) = -0.0773 -0.1385 0.1356 0.1794 -0.0534 -0.1110 -0.0137 -0.1744 -0.0188 (1 ,1 ,.,.) = -0.0396 0.0149 0.1537 0.0846 -0.1123 -0.0556 -0.1047 -0.1783 -0.0630 (1 ,2 ,.,.) = 0.1850 0.0325 0.0332 -0.0487 0.0018 0.1668 0.0569 0.0267 0.0124 (2 ,0 ,.,.) = 0.1880 -0.0152 -0.1088 -0.0105 0.1805 -0.0343 -0.1676 0.1249 0.1872 (2 ,1 ,.,.) = 0.0299 0.0449 0.1179 0.1280 -0.1545 0.0593 -0.1489 0.1378 -0.1495 (2 ,2 ,.,.) = -0.0922 0.1873 -0.1163 0.0970 -0.0682 -0.1110 0.0614 -0.1877 0.1918 (3 ,0 ,.,.) = -0.1257 -0.0814 -0.1923 0.0048 -0.0789 -0.0048 0.0780 -0.0290 0.1287 (3 ,1 ,.,.) = -0.0649 0.0773 -0.0584 0.0092 -0.1168 -0.0923 0.0614 0.1159 0.0134 (3 ,2 ,.,.) = 0.0426 -0.1055 0.1022 -0.0810 0.0540 -0.1011 0.0698 -0.0799 -0.0786 [torch.FloatTensor of size 4x3x3x3] , Parameter containing: -0.1367 -0.0410 0.0424 0.1353 [torch.FloatTensor of size 4] ]
因為是單位矩陣,所以直接對參數(shù)用sum()來模擬卷積過程,結(jié)果-0.639065589142 與之前的out結(jié)果的(0 ,0 ,.,.) = -0.6390 相同, 即conv2d 是通過利用4組filters,每組filter對每個通道分別卷積相加得到結(jié)果。
f_p=list(x.parameters())[0] f_p=f_p.data.numpy() print(f_p[0].sum()+(-0.1367)) -0.639065589142
再更新
import torch from torch.autograd import Variable input=torch.ones(1,1,5,5) input=Variable(input) x=torch.nn.Conv2d(in_channels=1,out_channels=3,kernel_size=3,groups=1) out=x(input) f_p=list(x.parameters())[0] f_p=f_p.data.numpy() f_b=list(x.parameters())[1] f_b=f_b.data.numpy() print("output result is:", out[0][0]) print("the result of first channel in image:", f_p[0].sum()+f_b[0])
output result is: Variable containing:
0.6577 0.6577 0.6577
0.6577 0.6577 0.6577
0.6577 0.6577 0.6577
[torch.FloatTensor of size 3x3]
the result of first channel in image: 0.657724
input=torch.ones(1,3,5,5) input=Variable(input) print(input.size()) x=torch.nn.Conv2d(in_channels=3,out_channels=4,kernel_size=3,groups=1) out=x(input) f_p=list(x.parameters())[0] f_b=list(x.parameters())[1] f_p=f_p.data.numpy() f_b=f_b.data.numpy() # print(f_p[...,0]) # print(f_p[...,0].shape) # print(f_p[...,0].sum()+f_b[0]) print("output result :",out[0][0]) print("simlatuate the result:", f_p[0].sum()+f_b[0])
torch.Size([1, 3, 5, 5])
output result : Variable containing:
-0.2087 -0.2087 -0.2087
-0.2087 -0.2087 -0.2087
-0.2087 -0.2087 -0.2087
[torch.FloatTensor of size 3x3]
simlatuate the result: -0.208715
感謝你能夠認(rèn)真閱讀完這篇文章,希望小編分享的“Pytorch.nn.conv2d驗證方式的示例分析”這篇文章對大家有幫助,同時也希望大家多多支持創(chuàng)新互聯(lián)成都網(wǎng)站設(shè)計公司,關(guān)注創(chuàng)新互聯(lián)成都網(wǎng)站設(shè)計公司行業(yè)資訊頻道,更多相關(guān)知識等著你來學(xué)習(xí)!
另外有需要云服務(wù)器可以了解下創(chuàng)新互聯(lián)scvps.cn,海內(nèi)外云服務(wù)器15元起步,三天無理由+7*72小時售后在線,公司持有idc許可證,提供“云服務(wù)器、裸金屬服務(wù)器、網(wǎng)站設(shè)計器、香港服務(wù)器、美國服務(wù)器、虛擬主機(jī)、免備案服務(wù)器”等云主機(jī)租用服務(wù)以及企業(yè)上云的綜合解決方案,具有“安全穩(wěn)定、簡單易用、服務(wù)可用性高、性價比高”等特點與優(yōu)勢,專為企業(yè)上云打造定制,能夠滿足用戶豐富、多元化的應(yīng)用場景需求。
本文題目:Pytorch.nn.conv2d驗證方式的示例分析-創(chuàng)新互聯(lián)
當(dāng)前鏈接:http://m.rwnh.cn/article30/psdpo.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供全網(wǎng)營銷推廣、網(wǎng)站設(shè)計公司、域名注冊、ChatGPT、外貿(mào)建站、網(wǎng)站維護(hù)
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)
猜你還喜歡下面的內(nèi)容