2021-02-18 分類: 網(wǎng)站建設(shè)
說(shuō)到大數(shù)據(jù)精準(zhǔn)營(yíng)銷,不得不提到精準(zhǔn)營(yíng)銷的關(guān)鍵要素,今天創(chuàng)新互聯(lián)就來(lái)分享一下大數(shù)據(jù)精準(zhǔn)營(yíng)銷的七個(gè)關(guān)鍵要素!
用戶畫(huà)像是根據(jù)用戶社會(huì)屬性、生活習(xí)慣和消費(fèi)行為等信息而抽象出的一個(gè)標(biāo)簽化的用戶模型。
具體包含以下幾個(gè)維度:
用戶固定特征:性別,年齡,地域,教育水平,生辰八字,職業(yè),星座
用戶興趣特征:興趣愛(ài)好,使用APP,網(wǎng)站,瀏覽/收藏/評(píng)論內(nèi)容,品牌偏好,產(chǎn)品偏好
用戶社會(huì)特征:生活習(xí)慣,婚戀,社交/信息渠道偏好,宗教信仰,家庭成分
用戶消費(fèi)特征:收入狀況,購(gòu)買力水平,商品種類,購(gòu)買渠道喜好,購(gòu)買頻次
用戶動(dòng)態(tài)特征:當(dāng)下時(shí)間,需求,正在前往的地方,周邊的商戶,周圍人群,新聞事件如何生成用戶精準(zhǔn)畫(huà)像大致分成三步。
首先得掌握繁雜的數(shù)據(jù)源。包括用戶數(shù)據(jù)、各式活動(dòng)數(shù)據(jù)、電子郵件訂閱數(shù)、線上或線下數(shù)據(jù)庫(kù)及客戶服務(wù)信息等。
這個(gè)是累積數(shù)據(jù)庫(kù);這里面最基礎(chǔ)的就是如何收集網(wǎng)站/APP用戶行為數(shù)據(jù)。比如當(dāng)你登陸某網(wǎng)站,其Cookie就一直駐留在瀏覽器中,當(dāng)用戶觸及的動(dòng)作,點(diǎn)擊的位置,按鈕,點(diǎn)贊,評(píng)論,粉絲,還有訪問(wèn)的路徑,可以識(shí)別并記錄他/她的所有瀏覽行為,然后持續(xù)分析瀏覽過(guò)的關(guān)鍵詞和頁(yè)面,分析出他的短期需求和長(zhǎng)期興趣。
還可以通過(guò)分析朋友圈,獲得非常清晰獲得對(duì)方的工作,愛(ài)好,教育等方面,這比個(gè)人填寫(xiě)的表單,還要更全面和真實(shí)。
我們用已知的數(shù)據(jù)尋找線索,不斷挖掘素材,不但可以鞏固老會(huì)員,也可以分析出未知的顧客與需求,進(jìn)一步開(kāi)發(fā)市場(chǎng)。
描述分析是最基本的分析統(tǒng)計(jì)方法,描述統(tǒng)計(jì)分為兩大部分:數(shù)據(jù)描述和指標(biāo)統(tǒng)計(jì)。
(1)數(shù)據(jù)描述:用來(lái)對(duì)數(shù)據(jù)進(jìn)行基本情況的刻畫(huà),包括數(shù)據(jù)總數(shù),范圍,數(shù)據(jù)來(lái)源。
(2)指標(biāo)統(tǒng)計(jì):把分布,對(duì)比,預(yù)測(cè)指標(biāo)進(jìn)行建模。這里常常是Data mining的一些數(shù)學(xué)模型,像響應(yīng)率分析模型,客戶傾向性模型,這類分群使用Lift圖,用打分的方法告訴你哪一類客戶有較高的接觸和轉(zhuǎn)化的價(jià)值。
在分析階段,數(shù)據(jù)會(huì)轉(zhuǎn)換為影響指數(shù),進(jìn)而可以做"一對(duì)一"的精準(zhǔn)營(yíng)銷。舉個(gè)例子,一個(gè)80后客戶喜歡在生鮮網(wǎng)站上早上10點(diǎn)下單買菜,晚上6點(diǎn)回家做飯,周末喜歡去附近吃日本料理,經(jīng)過(guò)搜集與轉(zhuǎn)換,就會(huì)產(chǎn)生一些標(biāo)簽,包括"80后""生鮮""做飯""日本料理"等等,貼在消費(fèi)者身上。
有了用戶畫(huà)像之后,便能清楚了解需求,在實(shí)際操作上,能深度經(jīng)營(yíng)顧客關(guān)系,甚至找到擴(kuò)散口碑的機(jī)會(huì)。例如上面例子中,若有生鮮的打折券,日本餐館最新推薦,營(yíng)銷人員就會(huì)把適合產(chǎn)品的相關(guān)信息,精準(zhǔn)推送這個(gè)消費(fèi)者的手機(jī)中;針對(duì)不同產(chǎn)品發(fā)送推薦信息,同時(shí)也不斷通過(guò)滿意度調(diào)查,跟蹤碼確認(rèn)等方式,掌握顧客各方面的行為與偏好。
除了顧客分群之外,營(yíng)銷人員也在不同時(shí)間階段觀察成長(zhǎng)率和成功率,前后期對(duì)照,確認(rèn)整體經(jīng)營(yíng)策略與方向是否正確;若效果不佳,又該用什么策略應(yīng)對(duì)。反復(fù)試錯(cuò)并調(diào)整模型,做到循環(huán)優(yōu)化。
這個(gè)階段的目的是提煉價(jià)值,再根據(jù)客戶需求精準(zhǔn)營(yíng)銷,最后追蹤客戶反饋的信息,完成閉環(huán)優(yōu)化。
我們從數(shù)據(jù)整合導(dǎo)入開(kāi)始,聚合數(shù)據(jù),在進(jìn)行數(shù)據(jù)的分析挖掘。數(shù)據(jù)分析和挖掘還是有一些區(qū)別。
數(shù)據(jù)分析重點(diǎn)是觀察數(shù)據(jù),單純的統(tǒng)計(jì),看KPI的升降原因。
而數(shù)據(jù)挖掘從細(xì)微和模型角度去研究數(shù)據(jù),從學(xué)習(xí)集、訓(xùn)練集發(fā)現(xiàn)知識(shí)規(guī)則,除了一些比較商業(yè)化的軟件SAS,WEKA功能強(qiáng)大的數(shù)據(jù)分析挖掘軟件,這邊還是更推薦使用R,Python,因?yàn)镾AS,SPSS本身比較昂貴,也很難做頁(yè)面和服務(wù)級(jí)別的API,而Python和R有豐富的庫(kù),可以類似WEKA的模塊,無(wú)縫交互其他API和程序,這里還需要熟悉數(shù)據(jù)庫(kù),Hadoop等。
在執(zhí)行大數(shù)據(jù)分析的3小時(shí)內(nèi),就可以輕松完成以下的目標(biāo):精準(zhǔn)挑選出1%的VIP顧客發(fā)送390份問(wèn)卷,全部回收 問(wèn)卷寄出3小時(shí)內(nèi)回收35%的問(wèn)卷 5天內(nèi)就回收了超過(guò)目標(biāo)數(shù)86%的問(wèn)卷數(shù)所需時(shí)間和預(yù)算都在以往的10%以下。
這是怎么做到在問(wèn)卷發(fā)送后的3個(gè)小時(shí)就回收35%?那是因?yàn)閿?shù)據(jù)做到了發(fā)送時(shí)間的"一對(duì)一定制化",利用數(shù)據(jù)得出,A先生最可能在什么時(shí)間打開(kāi)郵件就在那個(gè)時(shí)間點(diǎn)發(fā)送問(wèn)卷。
舉例來(lái)說(shuō),有的人在上班路上會(huì)打開(kāi)郵件,但如果是開(kāi)車族,并沒(méi)有時(shí)間填寫(xiě)答案,而搭乘公共交通工具的人,上班路上的時(shí)間會(huì)玩手機(jī),填寫(xiě)答案的概率就高,這些都是數(shù)據(jù)細(xì)分受眾的好處。
“預(yù)測(cè)”能夠讓你專注于一小群客戶,而這群客戶卻能代表特定產(chǎn)品的大多數(shù)潛在買家。當(dāng)我們采集和分析用戶畫(huà)像時(shí),可以實(shí)現(xiàn)精準(zhǔn)營(yíng)銷。這是最直接和最有價(jià)值的應(yīng)用,廣告主可以通過(guò)用戶標(biāo)簽來(lái)發(fā)布廣告給所要觸達(dá)的用戶,這里面又可以通過(guò)上圖提到的搜索廣告,展示社交廣告,移動(dòng)廣告等多渠道的營(yíng)銷策略,營(yíng)銷分析,營(yíng)銷優(yōu)化以及后端crm/供應(yīng)鏈系統(tǒng)打通的一站式營(yíng)銷優(yōu)化,全面提升ROI。
我們?cè)僬f(shuō)一說(shuō)營(yíng)銷時(shí)代的變遷,傳統(tǒng)的企業(yè)大多還停留在“營(yíng)銷1.0”時(shí)代,以產(chǎn)品為中心,滿足傳統(tǒng)的消費(fèi)者需求,而進(jìn)入“營(yíng)銷2.0”,以社會(huì)價(jià)值與品牌為使命,也不能完全精準(zhǔn)對(duì)接個(gè)性化需求。進(jìn)入營(yíng)銷3.0的數(shù)據(jù)時(shí)代,我們要對(duì)每個(gè)消費(fèi)者進(jìn)行個(gè)性化匹配,一對(duì)一營(yíng)銷,甚至精確算清楚成交轉(zhuǎn)化率,提高投資回報(bào)比。
大數(shù)據(jù)大的價(jià)值不是事后分析,而是預(yù)測(cè)和推薦,我就拿電商舉例,"精準(zhǔn)推薦"成為大數(shù)據(jù)改變零售業(yè)的核心功能。
譬如服裝網(wǎng)站Stitch fix例子,在個(gè)性化推薦機(jī)制方面,大多數(shù)服裝訂購(gòu)網(wǎng)站采用的都是用戶提交身形、風(fēng)格數(shù)據(jù)+編輯人工推薦的模式,Stitch Fix不一樣的地方在于它還結(jié)合了機(jī)器算法推薦。這些顧客提供的身材比例,主觀數(shù)據(jù),加上銷售記錄的交叉核對(duì),挖掘每個(gè)人專屬的服裝推薦模型。 這種一對(duì)一營(yíng)銷是最好的服務(wù)。
數(shù)據(jù)整合改變了企業(yè)的營(yíng)銷方式,現(xiàn)在經(jīng)驗(yàn)已經(jīng)不是累積在人的身上,而是完全依賴消費(fèi)者的行為數(shù)據(jù)去做推薦。未來(lái),銷售人員不再只是銷售人員,而能以專業(yè)的數(shù)據(jù)預(yù)測(cè),搭配人性的親切互動(dòng)推薦商品,升級(jí)成為顧問(wèn)型銷售。
關(guān)于預(yù)測(cè)營(yíng)銷的技術(shù)能力,有幾種選擇方案:
1、使用預(yù)測(cè)分析工作平臺(tái),然后以某種方法將模型輸入活動(dòng)管理工具;
2、以分析為動(dòng)力的預(yù)測(cè)性活動(dòng)外包給市場(chǎng)服務(wù)提供商;
3、評(píng)估并購(gòu)買一個(gè)預(yù)測(cè)營(yíng)銷的解決方案,比如預(yù)測(cè)性營(yíng)銷云和多渠道的活動(dòng)管理工具。
但無(wú)論哪條路,都要確定三項(xiàng)基本能力:
1)連接不同來(lái)源的客戶數(shù)據(jù),包括線上,線下,為預(yù)測(cè)分析準(zhǔn)備好數(shù)據(jù) ;
2)分析客戶數(shù)據(jù),使用系統(tǒng)和定制預(yù)測(cè)模型,做高級(jí)分析 ;
3)在正確時(shí)間,正確客戶,正確的場(chǎng)景出發(fā)正確行為,可能做交叉銷售,跨不同營(yíng)銷系統(tǒng)。
預(yù)測(cè)客戶購(gòu)買可能性的行業(yè)標(biāo)準(zhǔn)是RFM模型(最近一次消費(fèi)R,消費(fèi)頻率F,消費(fèi)金額M),但模型應(yīng)用有限,本質(zhì)是一個(gè)試探性方案,沒(méi)有統(tǒng)計(jì)和預(yù)測(cè)依據(jù)?!斑^(guò)去的成績(jī)不能保證未來(lái)的表現(xiàn)”,RFM只關(guān)注過(guò)去,不去將客戶當(dāng)前行為和其他客戶當(dāng)前行為做對(duì)比。這樣就無(wú)法在購(gòu)買產(chǎn)品之前識(shí)別高價(jià)值客戶。
我們聚焦的預(yù)測(cè)模型,就是為了在最短時(shí)間內(nèi)對(duì)客戶價(jià)值產(chǎn)生大影響。這里列舉一些其他模型參考:
1.參與傾向模型,預(yù)測(cè)客戶參與一個(gè)品牌的可能性,參與定義可以多元,比如參加一個(gè)活動(dòng),打開(kāi)電子郵件,點(diǎn)擊,訪問(wèn)某頁(yè)面??梢酝ㄟ^(guò)模型來(lái)確定EDM的發(fā)送頻率。并對(duì)趨勢(shì)做預(yù)測(cè),是增加還是減少活動(dòng)。
2.錢包模型,就是為每個(gè)客戶預(yù)測(cè)大可能的支出,定義為單個(gè)客戶購(gòu)買產(chǎn)品的大年度支出。然后看增長(zhǎng)模型,如果當(dāng)前的總目標(biāo)市場(chǎng)比較小,但未來(lái)可能很大,就需要去發(fā)現(xiàn)這些市場(chǎng)。
3.價(jià)格優(yōu)化模型,就是能夠去大限度提升銷售,銷量或利潤(rùn)的架構(gòu),通過(guò)價(jià)格優(yōu)化模型為每個(gè)客戶來(lái)定價(jià),這里需要對(duì)你想要的產(chǎn)品開(kāi)發(fā)不同的模型,或者開(kāi)發(fā)通用,可預(yù)測(cè)的客戶價(jià)格敏感度的模型,確定哪一塊報(bào)價(jià)時(shí)對(duì)客戶有大的影響。
4.關(guān)鍵字推薦模型,關(guān)鍵字推薦模型可以基于一個(gè)客戶網(wǎng)絡(luò)行為和購(gòu)買記錄來(lái)預(yù)測(cè)對(duì)某個(gè)內(nèi)容的喜愛(ài)程度,預(yù)測(cè)客戶對(duì)什么熱點(diǎn),爆款感興趣,營(yíng)銷者使用這種預(yù)測(cè)結(jié)果為特定客戶決定內(nèi)容營(yíng)銷主題。
5.預(yù)測(cè)聚集模型,預(yù)測(cè)聚集模型就是預(yù)測(cè)客戶會(huì)歸為哪一類。
去年人工智能特別火,特別是深度學(xué)習(xí)在機(jī)器視覺(jué),語(yǔ)言識(shí)別,游戲AI上的突飛猛進(jìn),以至于人們開(kāi)始恐慌人工智能是不是已經(jīng)可以接管人類工作,我個(gè)人是對(duì)新技術(shù)有著強(qiáng)烈的興趣,也非??春眯驴萍迹瑪?shù)據(jù)與現(xiàn)實(shí)的關(guān)聯(lián)。
在零售店買單的時(shí)候經(jīng)常被詢問(wèn)“你有沒(méi)有購(gòu)物卡”,當(dāng)我說(shuō)沒(méi)有收銀員會(huì)趕緊勸我免費(fèi)開(kāi)通,有打折優(yōu)惠,只需要填個(gè)手機(jī)號(hào)和郵箱,后面就可以針對(duì)我的購(gòu)買記錄做營(yíng)銷活動(dòng),而當(dāng)我下次進(jìn)來(lái),他們就讓我報(bào)出電話號(hào)碼做消費(fèi)者識(shí)別,當(dāng)時(shí)我想如果做到人臉識(shí)別,豈不是更方便,刷臉就可以買單。
而這個(gè)場(chǎng)景在去年也有了實(shí)驗(yàn),螞蟻金服研發(fā)出了一個(gè)生物識(shí)別機(jī)器人,叫螞可Mark,據(jù)說(shuō)其認(rèn)臉能力已經(jīng)超越了人類肉眼的能力。還有VR購(gòu)物,Amazon推出的無(wú)收銀員商店Amazon Go,通過(guò)手勢(shì)識(shí)別,物聯(lián)網(wǎng)和后續(xù)數(shù)據(jù)挖掘等技術(shù)實(shí)現(xiàn)購(gòu)物體驗(yàn)。
針對(duì)營(yíng)銷領(lǐng)域,主要有以下三種預(yù)測(cè)營(yíng)銷技術(shù):
無(wú)監(jiān)督學(xué)習(xí)技術(shù)能識(shí)別數(shù)據(jù)中的隱藏模式,也無(wú)須明確預(yù)測(cè)一種結(jié)果。比如在一群客戶中發(fā)現(xiàn)興趣小組,也許是滑雪,也許是長(zhǎng)跑,一般是放在聚類算法,揭示數(shù)據(jù)集合中 真實(shí)的潛在客戶。所謂聚類,就是自動(dòng)發(fā)現(xiàn)重要的客戶屬性,并據(jù)此做分類。
通過(guò)案例訓(xùn)練機(jī)器,學(xué)習(xí)并識(shí)別數(shù)據(jù),得到目標(biāo)結(jié)果,這個(gè)一般是給定輸入數(shù)據(jù)情況下預(yù)測(cè),比如預(yù)測(cè)客戶生命周期價(jià)值,客戶與品牌互動(dòng)的可能性,未來(lái)購(gòu)買的可能性。
這種是利用數(shù)據(jù)中的潛質(zhì)模式,精準(zhǔn)預(yù)測(cè)好的選擇結(jié)果,比如對(duì)某用戶做促銷應(yīng)該提供哪些產(chǎn)品。這個(gè)跟監(jiān)督學(xué)習(xí)不同,強(qiáng)化學(xué)習(xí)算法無(wú)須僅需輸入和輸出訓(xùn)練,學(xué)習(xí)過(guò)程通過(guò)試錯(cuò)完成。
從技術(shù)角度看,推薦模型應(yīng)用了協(xié)同過(guò)濾,貝葉斯網(wǎng)絡(luò)等算法模型。強(qiáng)化學(xué)習(xí)是被Google Brain團(tuán)隊(duì)的負(fù)責(zé)人Jeff Dean認(rèn)為是最有前途的AI研究方向之一。最近Google的一個(gè)AI團(tuán)隊(duì)DeepMind發(fā)表了一篇名為《學(xué)會(huì)強(qiáng)化學(xué)習(xí)》的論文。
按團(tuán)隊(duì)的話來(lái)說(shuō),叫做“學(xué)會(huì)學(xué)習(xí)”的能力,或者叫做能解決類似相關(guān)問(wèn)題的歸納能力。除了強(qiáng)化學(xué)習(xí),還在遷移學(xué)習(xí)。遷移學(xué)習(xí)就是把一個(gè)通用模型遷移到一個(gè)小數(shù)據(jù)上,使它個(gè)性化,在新的領(lǐng)域也能產(chǎn)生效果,類似于人的舉一反三、觸類旁通。
網(wǎng)頁(yè)題目:大數(shù)據(jù)精準(zhǔn)營(yíng)銷的七大關(guān)鍵要素
URL鏈接:http://m.rwnh.cn/news7/101557.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供全網(wǎng)營(yíng)銷推廣、網(wǎng)站維護(hù)、動(dòng)態(tài)網(wǎng)站、網(wǎng)站策劃、手機(jī)網(wǎng)站建設(shè)、網(wǎng)站排名
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請(qǐng)盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如需處理請(qǐng)聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來(lái)源: 創(chuàng)新互聯(lián)
猜你還喜歡下面的內(nèi)容